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4.3 More on the Cross Product

X1 X2
The cross product v x w of two R3-vectors v= | y; | and w= | y, | was defined in Section 4.2
21 <2

where we observed that it can be best remembered using a determinant:

P Xp X X1 X
vxw=det | j yi1 y» | = ? )Z)Z Zl Z2 b2 (4.3)
kK 71 2 1 22 1 22 Yoy
1 0 1
Herei= | 0|, j= | 1|, and k= | 0 | are the coordinate vectors, and the determinant is
0 0 0

expanded along the first column. We observed (but did not prove) in Theorem 4.2.5 that v x w is
orthogonal to both v and w. This follows easily from the next result.

Theorem 4.3.1

X0 X1 X2 X0 X1 X2
Ifu= |y |,v=|y1 |,andw= | y» |, thenu-(vxw)=det | yo y1 »
20 4 22 0 <1 22

Proof. Recall that u- (v x w) is computed by multiplying corresponding components of u and v x w
and then adding. Using equation (4.3), the result is:

yi oy x| x x| X Y0 A2
1 2 1 2 1 2
u-(vXw)=x + — +z = det
( ) o( o m) yo< . m) 0( " ) Yo Y1 ¥
0 U 2
where the last determinant is expanded along column 1. H

The result in Theorem 4.3.1 can be succinctly stated as follows: If u, v, and w are three vectors
in R3, then
u-(vxw)=det[u v w]
where [ u v w } denotes the matrix with u, v, and w as its columns. Now it is clear that v x w

is orthogonal to both v and w because the determinant of a matrix is zero if two columns are
identical.

Because of (4.3) and Theorem 4.3.1, several of the following properties of the cross product
follow from properties of determinants (they can also be verified directly).

Theorem 4.3.2

Let u, v, and w denote arbitrary vectors in R3.
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1. ux v is a vector. 6. (ku) x v=k(ux v)=ux (kv) for any
2. ux v is orthogonal to both u and v. scalar k.
3. ux0=0=0xu 7. ux (v+w) = (uxv)+(uxw).
4 uxu=0. 8. (v+w)xu=(vxu)+(wxu).
| 5. uxv=—(vxu).

Proof. (1) is clear; (2) follows from Theorem 4.3.1; and (3) and (4) follow because the determinant
of a matrix is zero if one column is zero or if two columns are identical. If two columns are
interchanged, the determinant changes sign, and this proves (5). The proofs of (6), (7), and (8) are
left as Exercise 4.3.15. [

We now come to a fundamental relationship between the dot and cross products.

Theorem 4.3.3: Lagrange Identity'?

If u and v are any two vectors in R, then

2 2 2 2
[ux vi[”= [[ul"[|v]" = (u-v)

X1 X2
Proof. Given u and v, introduce a coordinate system and write u= | y; | and v= | y» | in

21 2
component form. Then all the terms in the identity can be computed in terms of the components.
The detailed proof is left as Exercise 4.3.14. []

An expression for the magnitude of the vector u x v can be easily obtained from the Lagrange
identity. If 6 is the angle between u and v, substituting u-v = ||u|||v|/cos 6 into the Lagrange
identity gives

lu s v[f? = [[af?[|v]* — [Jul*||v]*cos® & = [ul|*|v]]* sin* 6

using the fact that 1 —cos?6 = sin?> 0. But sin6 is nonnegative on the range 0 < 6 < 7, so taking
the positive square root of both sides gives

[lux vl = [luflfv][sin6

12 Joseph Louis Lagrange (1736-1813) was born in Italy and spent his early years in Turin. At the age of 19 he
solved a famous problem by inventing an entirely new method, known today as the calculus of variations, and went
on to become one of the greatest mathematicians of all time. His work brought a new level of rigour to analysis and
his Mécanique Analytique is a masterpiece in which he introduced methods still in use. In 1766 he was appointed to
the Berlin Academy by Frederik the Great who asserted that the “greatest mathematician in Europe” should be at
the court of the “greatest king in Europe.” After the death of Frederick, Lagrange went to Paris at the invitation of
Louis XVI. He remained there throughout the revolution and was made a count by Napoleon.
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—————————————————— ,’ This expression for |[u X v|| makes no reference to a coordi-
nate system and, moreover, it has a nice geometrical interpreta-
! , tion. The parallelogram determined by the vectors u and v has
0 4 L base length ||v|| and altitude ||ul|sin 6 (see Figure 4.3.1). Hence
the area of the parallelogram formed by u and v is

~

Figure 4.3.1 (Ila]|sin®)||v|| = [Jux v||

This proves the first part of Theorem 4.3.4.

Theorem 4.3.4

If u and v are two nonzero vectors and 6 is the angle between u and v, then

1. ||lux v|| = ||ul|||v||sin® = the area of the parallelogram determined by u and v.

2. u and v are parallel if and only if ux v= 0.

Proof of (2). By (1), ux v =0 if and only if the area of the parallelogram is zero. By Figure 4.3.1
the area vanishes if and only if u and v have the same or opposite direction—that is, if and only if
they are parallel. ]

Example 4.3.1

PR Find the area of the triangle with vertices P(2, 1, 0),
Pt ' 0(3, —1, 1), and R(1, 0, 1).
Pe” i
'. 1 2
0 Solution. We have I@ = 1 | and IF@ = | —1 |. The
—1 0
R area of the triangle is half the area of the parallelogram (see
the diagram), and so equals %Hﬁ X @H We have
i 1 2 —1
RExRO=det | §j 1 —1|=] —2
k -1 0 -3
so the area of the triangle is %Hﬁ X@H =1V/T+4+9=1V14.

If three vectors u, v, and w are given, they determine a “squashed”

UxXv rectangular solid called a parallelepiped (Figure 4.3.2), and it is
e b often useful to be able to find the volume of such a solid. The base of
)/ /%‘;- —____.2_.__%  thesolid is the parallelogram determined by u and v, so it has area
r - v A = ||lux v|| by Theorem 4.3.4. The height of the solid is the length
Ni ---------- g h of the projection of w on u x v. Hence
Figure 4.3.2 h— VITu(::II‘;) luxv| = |“ﬁl(ll>l<>\<l“|l)| _w (ZXV)\
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Thus the volume of the parallelepiped is hA = |w - (u x v)|. This proves

Theorem 4.3.5

The volume of the parallelepiped determined by three vectors w, u, and v (Figure 4.3.2) is
given by |w- (ux v)|.

Example 4.3.2

Find the volume of the parallelepiped determined by the vectors

1 1 —2
W= 2 ,u=|[11],v= 0
—1 0 1
1 1 -2
Solution. By Theorem 4.3.1, w- (u x v) = det 2 1 0 | =-3. Hence the volume is
-1 0 1

|lw-(uxv)|=]|—3|=3 by Theorem 4.3.5.

We can now give an intrinsic description of the cross product u x v.
y Its magnitude ||ux v|| = ||ul|||v||sin® is coordinate-free. If ux v #0,

B X its direction is very nearly determined by the fact that it is orthogonal
to both u and v and so points along the line normal to the plane

determined by u and v. It remains only to decide which of the two
possible directions is correct.

Z
Left-hand system

. Before this can be done, the basic issue of how coordinates are as-
signed must be clarified. When coordinate axes are chosen in space,

y the procedure is as follows: An origin is selected, two perpendicular

0 lines (the x and y axes) are chosen through the origin, and a positive

X direction on each of these axes is selected quite arbitrarily. Then the

line through the origin normal to this x-y plane is called the z axis,

but there is a choice of which direction on this axis is the positive one.

Figure 4.3.3 The two possibilities are shown in Figure 4.3.3, and it is a standard

convention that cartesian coordinates are always right-hand coor-

dinate systems. The reason for this terminology is that, in such a system, if the z axis is grasped

in the right hand with the thumb pointing in the positive z direction, then the fingers curl around
from the positive x axis to the positive y axis (through a right angle).

Right-hand system

Suppose now that u and v are given and that 6 is the angle between them (so 0 < 6 < ). Then
the direction of ||u x v|| is given by the right-hand rule.
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Right-hand Rule

If the vector u x v is grasped in the right hand and the fingers curl around from u to v
through the angle 6, the thumb points in the direction for u x v.

To indicate why this is true, introduce coordinates in R? as follows:
z Let u and v have a common tail O, choose the origin at O, choose the
x axis so that u points in the positive x direction, and then choose
the y axis so that v is in the x-y plane and the positive y axis is on
the same side of the x axis as v. Then, in this system, u and v have

a b
y component form u= | 0 | and v= | ¢ | where a >0 and ¢ > 0.
0 0

The situation is depicted in Figure 4.3.4. The right-hand rule asserts
that u x v should point in the positive z direction. But our definition

Figure 4.3.4 of uxv gives
iabd 0
uxv=det| j O ¢c|=| 0 | =(ac)k

k 00 ac

and (ac)k has the positive z direction because ac > 0.

Exercises for 4.3

Exercise 4.3.1 If i, j, and k are the coordinate v 1

vectors, verify that ixj=k, jxk =1, and k xi=}j. b, +% | —1

-1
Exercise 4.3.2 Show that u x (v x w) need not

1 b lculating both wh
equal (u x v) X w by calculating both when Exercise 4.3.4 Find the area of the triangle with
1 1 0 the following vertices.
u=|1]|,v=|1], andw=| 0
1

0 1 a. A(3, —1, 2), B(1, 1, 0), and C(1, 2, —1)

(
Exercise 4.3.3 Find two unit vectors orthogonal b. A(3, 0, 1), B(5, 1, 0), and C(7, 2, —1)
to both u and v if: (

(

o, . c. A(1, 1, —1), B(2, 0, 1), and C(1, —1, 3)
a.u=| 2 [, v=] —1 d. A(3, —1, 1), B(4, 1, 0), and C(2, —3, 0)
- 2 2 -
1 3]
b. u= 2 |,v=]1
| -1 2] b. 0




Exercise 4.3.5 Find the volume of the paral-

lelepiped determined by w, u, and v when:
o 5
a.w=|[1[,v=]0|,andu= 1
|1 2 -1 |
[ 1] [ 2 1]
b.w=]|0|,v= 1 andu=| 1
| 3 ] | 3 1 |
b. 7

Exercise 4.3.6 Let Py be a point with vector p,
and let ax+ by +cz = d be the equation of a plane
a
with normal n= | »
c

a. Show that the point on the plane closest to Py

has vector p given by

d—(py'n)
[[n]2

p=p0+ n.

[Hint: p=py—+1tn for some ¢, and p-n=d.]

b. Show that the shortest distance from Py to the
plane is 4=Pon)l

[n]]

c. Let P} denote the reflection of Py in the plane—
that is, the point on the opposite side of the
plane such that the line through Py and P
is perpend1cular to the plane. Show that
po+24 H( B D)1 is the vector of P

b. The distance is ||p — pgl|; use part (a.).

Exercise 4.3.7 Simplify (au+bv) x (cu+dv).

Exercise 4.3.8 Show that the shortest distance

from a point P to the line through Py with direction
|RPxd]

vector d is
dll

Exercise 4.3.9 Let uand v be nonzero, nonorthog-
onal vectors. If 6 is the angle between them, show
that tan@ = LWVl

uv
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Exercise 4.3.10 Show that points A, B, and
C are all on one line if and only if ABxAC =0

Hz@ x AC || is the area of the parallelogram deter-
mined by A, B, and C.

Exercise 4.3.11 Show that points A, B, C, and D
are all on one plane if and only if ﬁ (A xﬁ

Exercise 4.3.12 Use Theorem 4.3.5 to confirm
that, if u, v, and w are mutually perpendicular, the
(rectangular) parallelepiped they determine has vol-
ume [[ul[fv]]}w]l
Because u and v x w are parallel, the angle 6 be-
tween them is 0 or m. Hence cos(6) = £1, so
the volume is |u- (v x w)| = ||ul|||v x w| cos(8) =
|lull[[(v x w)||. But the angle between v and w is
2 50 ||v x w|| = [[v][[Iw/cos(Z) = [v][w]. The re-
sult follows.

Exercise 4.3.13 Show that the volume of the
parallelepiped determined by u, v, and u x v is
[ux v|?

Exercise 4.3.14
rem 4.3.3.

Complete the proof of Theo-

Exercise 4.3.15 Prove the following properties in
Theorem 4.3.2.

a) Property 6 b) Property 7

c) Property 8

ui Vi wi
b.fu=|wuw |,v=]| v | andw= | wp [,
us V3 w3
1 u; vi+w i
thenux (v+w)=det | j up vr+wp
k w3 vit+ws |
iy v i u wp ]
= det j uy vy | 4+ det _] U wy
k wuzy v3 k w3 ws |
= (uxv)+(uxw) where we used Exercise
4.3.21.
Exercise 4.3.16
a. Show that w-(uxv)=u-(vxw)=vx(wXx

u) holds for all vectors w, u, and v.
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b. Show that v—w and (uxv)+ (v xw)+ (w x
u) are orthogonal.

b. (v—w)-[(uxVv)+(vxw)+(wxu)]=(v—
W) -(uxv)+(v—w)- (VvXw)+(v—w) (WX
u)=-w-(uxv)+0+v-(wxu)=0.

Exercise 4.3.17 Show ux (vxw) = (u-w)v—
(ux v)w. [Hint: First do it for u=1, j, and k; then
write u = xi+yj+zk and use Theorem 4.3.2.]

Exercise 4.3.18 Prove the Jacobi identity:
ux (Vvxw)+vx(wxu)+wx(uxv)=0

[Hint: The preceding exercise.]

Exercise 4.3.19 Show that

<uxv>-<wxz>:det[u'w u-z]

V-W V-Z

[Hint: Exercises 4.3.16 and 4.3.17.]

Exercise 4.3.20 Let P, Q, R, and S be four points,
not all on one plane, as in the diagram. Show that
the volume of the pyramid they determine is

Y1PQ - (PR x PS)|.

[Hint: The volume of a cone with base area A and
height & as in the diagram below right is %Ah.]

Exercise 4.3.21 Consider a triangle with vertices
A, B, and C, as in the diagram below. Let ¢, 8, and
Y denote the angles at A, B, and C, respectively, and
let a, b, and ¢ denote the lengths of the sides oppo-
site A, B, %d C, respectively. Write u=AB, v = BC,
and w = CA.

A\oc b

a. Deduce that u+v+w=20.

b. Show that uxv=wxu=vxw. [Hint: Com-
pute ux (u+v+w) and vx (u+v+w).]

c. Deduce the law of sines:

sin@ __
a

sinB __ siny
b T ¢

Exercise 4.3.22 Show that the (shortest) distance
between two Flanes n-p=d, and n-p=d, with n
as normal is dﬁ;ﬁ"

Let p; and p, be vectors of points in the planes,
so p;-n=d; and p,-n =d,. The distance is the

length of the projection of p, —p; along n; that is

[(p>—py)n| _ ldi—ds]
] Tl

Exercise 4.3.23 Let A and B be points other than
the origin, and let a and b be their vectors. If a and
b are not parallel, show that the plane through A,
B, and the origin is given by

X

{Px.y. 2) | | ¥
Z

= sa-+1b for some s and 7}

Exercise 4.3.24 Let A be a 2 x 3 matrix of rank 2
with rows r; and ry. Show that

P={XA|X = [xy|;x, y arbitrary}

is the plane through the origin with normal r; x r;.

Exercise 4.3.25 Given the cube with vertices
P(x, y, z), where each of x, y, and z is either 0 or
2, consider the plane perpendicular to the diagonal
through P(0, 0, 0) and P(2, 2, 2) and bisecting it.

a. Show that the plane meets six of the edges of
the cube and bisects them.

b. Show that the six points in (a) are the vertices
of a regular hexagon.
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